Journal of Mahani Mathematical Research (May 2023)

A Subclass of bi-univalent functions by Tremblay differential operator satisfying subordinate conditions

  • Somayeh Fadaei,
  • Shahram Najafzadeh,
  • Ali Ebadian

DOI
https://doi.org/10.22103/jmmr.2023.20022.1312
Journal volume & issue
Vol. 12, no. 2
pp. 431 – 441

Abstract

Read online

In this paper, we introduce a newly defined subclass $\mathcal{S}_{\Sigma}(\vartheta,\gamma,\eta;\varphi) $ of bi-univalent functions by using the Tremblay differential operator satisfying subordinate conditions in the unit disk. Moreover, we use the Faber polynomial expansion to derive bounds for the Fekete-Szego problem and first two \emph{Taylor-Maclaurin coefficients} $|a_2|$ and $|a_3|$ for functions of this class.

Keywords