BMC Complementary Medicine and Therapies (Mar 2024)

Tetrastigma hemsleyanum (Sanyeqing) root extracts evoke S phase arrest while inhibiting the migration and invasion of human pancreatic cancer PANC-1 cells

  • Yifan Sun,
  • Haiyan Qin,
  • Chunchun Zhang,
  • Jian Xu,
  • Ting Zhang

DOI
https://doi.org/10.1186/s12906-024-04425-1
Journal volume & issue
Vol. 24, no. 1
pp. 1 – 12

Abstract

Read online

Abstract Background Ethyl acetate extracts from Tetrastigma hemsleyanum (Sanyeqing) (EFT), a member of the Vitaceae plant family, have been shown to exhibit efficacy against a variety of cancers. In this light, our current study seeks to examine the mechanism of efficacy between EFT extracts and human pancreatic cancer PANC-1 cells. Methods The chemical components of EFT were analyzed by gas chromatography–mass spectrometry. The cytotoxicity of EFT on PANC-1 cells was measured using an MTT assay. In order to investigate EFT induction of cell cycle arrest, changes in cell-cycle distribution were monitored by flow cytometry. Wound healing and transwell assays were employed to investigate whether migration and invasion of PANC-1 cells were inhibited by EFT. Relative protein expression was detected using Western blot. Results GC-MS analysis of the chemical composition of EFT revealed that the majority of constituents were organic acids and their corresponding esters. EFT exhibits measurable cytotoxicity and inhibition of PANC-1 invasion. Growth inhibition was primarily attributed to downregulation of CDK2 which induces cell cycle arrest in the S-phase. Inhibition of metastasis is achieved through downregulation of mesenchymal-associated genes/activators, including ZEB1, N-cadherin, Vimentin, and Fibronectin. Meanwhile, the expression of E-cadherin was significantly increased by EFT treatment. Furthermore, downregulation of MMP-2 and MMP-9 were observed. Conclusion Treatment of PANC-1 with EFT demonstrated measurable cytotoxic effects. Furthermore, EFT evoked S phase arrest while inhibiting the migration and invasion of PANC-1 cells. Additionally, EFT inhibited the epithelial to mesenchymal transition and MMPs expression in PANC-1 cells. This study serves to confirm the strong therapeutic potential of EFT while identifying the mechanisms of action.

Keywords