Measurement of the Magnetic Field in a Linear Magnetized Plasma by Tunable Diode Laser Absorption Spectroscopy
Sven Dickheuer,
Oleksandr Marchuk,
Tsanko Vaskov Tsankov,
Dirk Luggenhölscher,
Uwe Czarnetzki,
Wojciech Gromelski,
Stephan Ertmer,
Arkadi Kreter
Affiliations
Sven Dickheuer
Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung-Plasmaphysik, Partner of the Triliteral Euregio Cluster (TEC), 52425 Jülich, Germany
Oleksandr Marchuk
Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung-Plasmaphysik, Partner of the Triliteral Euregio Cluster (TEC), 52425 Jülich, Germany
Tsanko Vaskov Tsankov
Institute for Plasma and Atomic Physics, Ruhr University Bochum, 44780 Bochum, Germany
Dirk Luggenhölscher
Institute for Plasma and Atomic Physics, Ruhr University Bochum, 44780 Bochum, Germany
Uwe Czarnetzki
Institute for Plasma and Atomic Physics, Ruhr University Bochum, 44780 Bochum, Germany
Wojciech Gromelski
Institute of Plasma Physics and Laser Microfusion, 01497 Warsaw, Poland
Stephan Ertmer
Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung-Plasmaphysik, Partner of the Triliteral Euregio Cluster (TEC), 52425 Jülich, Germany
Arkadi Kreter
Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung-Plasmaphysik, Partner of the Triliteral Euregio Cluster (TEC), 52425 Jülich, Germany
Tunable diode laser absorption spectroscopy (TDLAS) is a commonly used technique to measure the temperature and density of atoms or molecules in a gas. In this work, we demonstrate that the TDLAS diagnostics could be effectively applied to measure the magnetic field in a low-density weakly magnetized plasma using the Zeeman splitting of the absorption spectrum of lines from noble gases. The laser wavelength is tailored to fit the 1 s 5 → 2 p 6 transition of atomic Ar with the wavelength λ = 763.51 nm . Two mechanisms of line broadening and splitting are observed: Doppler broadening and Zeeman effect. The latter is especially pronounced by applying polarization-selective observation of the absorption to the TDLAS measurements. By fitting the σ and π components of the absorption spectrum, the line-integrated magnetic field on the order of 30–50 mT is determined. The agreement between the measured values and the vacuum field (neglecting the impact of the plasma) calculations on the axis of the PSI-2 is found to be about 15–20%.