Synthesis and Antitumor Evaluation of Novel 5-Hydrosulfonyl-1H-benzo[d]imidazol-2(3H)-one Derivatives
Guang Ouyang,
Rongsheng Tong,
Jinqi Li,
Lan Bai,
Liang Ouyang,
Xingmei Duan,
Fengqiong Li,
Pin He,
Jianyou Shi,
Yuxin He
Affiliations
Guang Ouyang
Individualized Medication Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, School of Medicine, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China
Rongsheng Tong
Individualized Medication Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, School of Medicine, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China
Jinqi Li
Individualized Medication Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, School of Medicine, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China
Lan Bai
Individualized Medication Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, School of Medicine, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China
Liang Ouyang
Bioengineering College, Xihua University, Chengdu 610039, Sichuan, China
Xingmei Duan
Individualized Medication Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, School of Medicine, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China
Fengqiong Li
Individualized Medication Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, School of Medicine, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China
Pin He
Individualized Medication Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, School of Medicine, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China
Jianyou Shi
Individualized Medication Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, School of Medicine, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China
Yuxin He
State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
A series of novel 5-hydrosulfonyl-1H-benzo[d]imidazol-2(3H)-one derivatives bearing natural product substructures has been successfully synthesized and their antitumor activity studied. These newly synthesized derivatives were characterized by 1H-NMR, 13C-NMR and high resolution mass spectral data, then screened as antitumor agents against the A549, HCC1937, and MDA-MB-468 human tumor cell lines using MTT cell proliferation assays. The results show that some of these compounds can effectively inhibit the growth of these cancerous cells, with compound 5b being the best one (IC50 = 2.6 μM). Flow cytometry data revealed that compound 5b induced apoptosis of HCC1937 cells with increased solution concentration. The structure and activity relationships (SAR) of these compounds is summarized.