Advances in Polymer Technology (Jan 2019)

Preparation of LDHs Based on Bittern and Its Flame Retardant Properties in EVA/LDHs Composites

  • Long Li,
  • Yi Qian,
  • Peng Qiao,
  • Haoyue Han,
  • Haiming Zhang

DOI
https://doi.org/10.1155/2019/4682164
Journal volume & issue
Vol. 2019

Abstract

Read online

Bittern, as a byproduct of salt manufacture, is abundant in China. The researches and developments for seawater bittern have mainly focused on the reuse of magnesium, calcium, lithium, and boron. However, the utilization rate is less than 20%. The large amount of unused bittern has become a challenge that attracts much attention in academic and industry areas. In this paper, three kinds of layered double hydroxides (LDHs) were synthesized from bittern using a coprecipitation method and characterized by X-ray diffraction (XRD). The XRD results showed that the three kinds of LDHs(MgAl-LDHs, MgFe-LDHs and MgAlFe-LDHs) were successfully synthesized. Then, the flame retardant properties and thermal properties of the three LDHs in ethylene vinyl acetate (EVA)/LDHs composites had been tested by cone calorimeter test (CCT), limiting oxygen index (LOI), smoke density test (SDT), and thermogravimetry-Fourier transform infrared spectrometry (TG-IR). The CCT results showed that the heat release rate (HRR) of all three kinds of EVA/LDHs composites significantly decreased compared with that of pure EVA, and the EVA/MgAl-LDHs composites had the lowest PHRR value of 222.65 kW/m2. The LOI results showed that EVA/MgAl-LDHs composites had the highest LOI value of 29.8%. The SDT results indicated that MgAl-LDHs were beneficial to smoke suppression. TG-IR results showed that EVA/MgAl-LDHs composites had a better thermal stability.