Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica (Dec 2012)
On Variable Exponent Amalgam Spaces
Abstract
We derive some of the basic properties of weighted variable exponent Lebesgue spaces Lp(.)w (ℝn) and investigate embeddings of these spaces under some conditions. Also a new family of Wiener amalgam spaces W(Lp(.)w ;Lqv) is defined, where the local component is a weighted variable exponent Lebesgue space Lp(.)w (ℝn) and the global component is a weighted Lebesgue space Lqv (ℝn) : We investigate the properties of the spaces W(Lp(.)w ;Lqv): We also present new Hölder-type inequalities and embeddings for these spaces.
Keywords