PLoS ONE (Jan 2024)

Diagnostics of preeclampsia based on Congo red binding to urinary components: Rationales and limitations.

  • Sergei A Fedotov,
  • Maria S Khrabrova,
  • Elena S Vashukova,
  • Andrey S Glotov,
  • Anastasia O Anpilova,
  • Vladimir A Dobronravov,
  • Maria E Velizhanina,
  • Aleksandr A Rubel

DOI
https://doi.org/10.1371/journal.pone.0297144
Journal volume & issue
Vol. 19, no. 1
p. e0297144

Abstract

Read online

Preeclampsia is a disorder that can occur during pregnancy and is one of the leading causes of death among pregnant women. This disorder occurs after the 20th week of pregnancy and is characterized by arterial hypertension, proteinuria, fetoplacental, and multiple organ dysfunctions. Despite the long history of studying preeclampsia, its etiology and pathogenesis remain poorly understood, and therapy is symptomatic. One of the factors of the disorder is believed to be misfolded proteins that are prone to form amyloid aggregates. The CRD tests, utilizing the binding of the amyloid-specific dye Congo red to urine components, demonstrate high efficiency in diagnosing preeclampsia. However, these tests have also been found to be positive in other disorders with proteinuria, presumably associated with concomitant amyloidosis. To assess the limitations of the CRD tests, we examined urine congophilia and protein components mediating Congo red positivity in patients with proteinuria, including preeclampsia, amyloid and non-amyloid nephropathies. We stained the urine samples and calculated congophilia levels. We also assessed the contribution of large protein aggregates to congophilia values using ultracentrifugation and determined the molecular weights of congophilic urinary proteins using centrifugal concentrators. All proteinuric groups demonstrate positive results in the CRD tests and congophilia levels were more than two times higher compared with the control non-proteinuric groups (p <0.01). There was a strong correlation between urine protein excretion and congophilia in amyloid nephropathy (rs = 0.76), non-amyloid nephropathies (rs = 0.90), and preeclampsia (rs = 0.90). Removal of large aggregates from urine did not affect the congophilia levels. Separation of urine protein fractions revealed congophilic components in the range of 30-100 kDa, including monomeric serum albumin. Our results indicate limitations of CRD tests in preeclampsia diagnostics in women with renal disorders and underscore the need for further research on the mechanisms of Congo red binding with urine components.