PLoS ONE (Jan 2013)

Influence of sinogram affirmed iterative reconstruction of CT data on image noise characteristics and low-contrast detectability: an objective approach.

  • Christian von Falck,
  • Vesela Bratanova,
  • Thomas Rodt,
  • Bernhard Meyer,
  • Stephan Waldeck,
  • Frank Wacker,
  • Hoen-oh Shin

DOI
https://doi.org/10.1371/journal.pone.0056875
Journal volume & issue
Vol. 8, no. 2
p. e56875

Abstract

Read online

OBJECTIVES: To utilize a novel objective approach combining a software phantom and an image quality metric to systematically evaluate the influence of sinogram affirmed iterative reconstruction (SAFIRE) of multidetector computed tomography (MDCT) data on image noise characteristics and low-contrast detectability (LCD). MATERIALS AND METHODS: A low-contrast and a high-contrast phantom were examined on a 128-slice scanner at different dose levels. The datasets were reconstructed using filtered back projection (FBP) and SAFIRE and virtual low-contrast lesions (-20HU) were inserted. LCD was evaluated using the multiscale structural similarity index (MS-SIM*). Image noise texture and spatial resolution were objectively evaluated. RESULTS: The use of SAFIRE led to an improvement of LCD for all dose levels and lesions sizes. The relative improvement of LCD was inversely related to the dose level, declining from 208%(±37%), 259%(±30%) and 309%(±35%) at 25mAs to 106%(±6%), 119%(±9%) and 123%(±8%) at 200mAs for SAFIRE filter strengths of 1, 3 and 5 (p<0.05). SAFIRE reached at least the LCD of FBP at a relative dose of 50%. There was no statistically significant difference in spatial resolution. The use of SAFIRE led to coarser image noise granularity. CONCLUSION: A novel objective approach combining a software phantom and the MS-SSIM* image quality metric was used to analyze the detectability of virtual low-contrast lesions against the background of image noise as created using SAFIRE in comparison to filtered back-projection. We found, that image noise characteristics using SAFIRE at 50% dose were comparable to the use of FBP at 100% dose with respect to lesion detectability. The unfamiliar imaging appearance of iteratively reconstructed datasets may in part be explained by a different, coarser noise characteristic as demonstrated by a granulometric analysis.