Journal of Composites Science (Sep 2021)

Toughening and Healing of CFRPs by Electrospun Diels–Alder Based Polymers Modified with Carbon Nano-Fillers

  • Athanasios Kotrotsos,
  • Constantinos Rouvalis,
  • Anna Geitona,
  • Vassilis Kostopoulos

DOI
https://doi.org/10.3390/jcs5090242
Journal volume & issue
Vol. 5, no. 9
p. 242

Abstract

Read online

In the present investigation, thermo-reversible bonds formed between maleimide and furan groups (Diels–Alder (DA)-based bis-maleimides (BMI)) have been generated to enable high-performance unidirectional (UD) carbon fiber-reinforced plastics (CFRPs) with self-healing (SH) functionality. The incorporation of the SH agent (SHA) was performed locally, only in areas of interest, with the solution electrospinning process (SEP) technique. More precisely, reference and modified CFRPs with (a) pure SHA, (b) SHA modified with multi-walled carbon nano-tubes (MWCNTs) and (c) SHA modified with graphene nano-platelets (GNPs) were fabricated and further tested under Mode I loading conditions. According to experimental results, it was shown that the interlaminar fracture toughness properties of modified CFRPs were considerably enhanced, with GNP-modified ones to exhibit the best toughening performance. After the first fracture and the activation of the healing process, C-scan inspections revealed, macroscopically, a healing efficiency (H.E.) of 100%; however, after repeating the tests, a low recovery of mechanical properties was achieved. Finally, optical microscopy (OM) examinations not only showed that the epoxy matrix at the interface was partly infiltrated by the DA resin, but it also revealed the presence of pulled-out fibers at the fractured surfaces, indicating extended fiber bridging between crack flanks due to the presence of the SHA.

Keywords