Carbonate-Hydroxyapatite Cement: The Effect of Composition on Solubility In Vitro and Resorption In Vivo
Yulia Lukina,
Leonid Bionyshev-Abramov,
Sergey Kotov,
Natalya Serejnikova,
Dmitriiy Smolentsev,
Sergey Sivkov
Affiliations
Yulia Lukina
National Medical Research Center for Traumatology and Orthopedics Named after N.N. Priorov, Ministry of Health of the Russian Federation, Ul. Priorova 10, 127299 Moscow, Russia
Leonid Bionyshev-Abramov
National Medical Research Center for Traumatology and Orthopedics Named after N.N. Priorov, Ministry of Health of the Russian Federation, Ul. Priorova 10, 127299 Moscow, Russia
Sergey Kotov
Experimental Tests Preparation and Carry Out Department No. 29, Research Institute of Concrete and Reinforced Concrete (NIIZHB) A.A. Gvozdev, JSC Research Center of Construction, 2nd Institutskaya Str., 6, 109428 Moscow, Russia
Natalya Serejnikova
National Medical Research Center for Traumatology and Orthopedics Named after N.N. Priorov, Ministry of Health of the Russian Federation, Ul. Priorova 10, 127299 Moscow, Russia
Dmitriiy Smolentsev
National Medical Research Center for Traumatology and Orthopedics Named after N.N. Priorov, Ministry of Health of the Russian Federation, Ul. Priorova 10, 127299 Moscow, Russia
Sergey Sivkov
Faculty of Technology of Inorganic Substances and High-Temperature Materials, Mendeleev University of Chemical Technology of Russia, Miusskaya Pl. 9, 125047 Moscow, Russia
The rate of resorption of calcium phosphate self-hardening materials for bone regeneration can be changed by changing the phase composition. The Ca3(PO4)2/CaCO3/Ca(H2PO4)2·H2O/Na2HPO4·12H2O system is important for the synthesis of self-curing bioactive materials with variable resorption rates by changing the ratios of the initial components. Cement compositions in twelve figurative points of a four-component composition diagram at a fixed content in the α-Ca3(PO4)2 system were studied with XRD, FTIR, SEM, calorimetric, and volumetric methods to obtain an idea of the effect of composition on solubility in vitro and resorption in vivo. It was found that the presence of the highly resorbable phase of dicalcium phosphate dihydrate in cement and the substitution of phosphate ions with the carbonate ions of hydroxyapatite increased solubility in vitro and resorption in vivo. The obtained results confirm the possibility of changing the solubility of a final product in the Ca3(PO4)2/CaCO3/Ca(H2PO4)2·H2O/Na2HPO4·12H2O system by changing the ratio of the initial components.