Applied Sciences (Sep 2020)

Reduction of Stress Concentration Factor (SCF) on the Bolted Joint Connection for a Large Wind Turbine Rotor Blade through Various Design Modifications

  • Kwangtae Ha

DOI
https://doi.org/10.3390/app10186588
Journal volume & issue
Vol. 10, no. 18
p. 6588

Abstract

Read online

The importance of a reliable blade root connection has grown due to the higher-gravity-induced edgewise loads on the blade root that resulted from the recent increased size and weight of a wind turbine rotor blade. To avoid the loosening of a bolt joint connection or even consecutive blade failures, the stress concentration factor (SCF) at the bolt thread root that is sensitive to fatigue should be understood comprehensively. In this work, two-dimensional and three-dimensional finite element (FE) analysis methods were used to determine the SCF at the bolt threads both between an insert and a M42 bolt used for a large offshore blade, and between a M42 bolt and a nut. The effect of various geometric parameters on the SCF were also investigated, which included shank diameter, nut height, nut type, and relief cone. Results showed that the decreased diameter of a M42 bolt shank diameter was the dominant design driver in reducing the stress concentration factor by 40%, from 3.94 to 2.32. The round nut type was also a recommended factor to be implemented to connect bolts and inner pitch bearing with an additional 10% SCF reduction. The relief cones applied to bolt threads and insert threads also contributed to the reduction of SCF to 2.01, a 49% reduction in total. This work not only provides guidelines by which to choose the proper geometry of the bolt and nut for a large blade, but also could be beneficial in designing bolted joint connections of segment or modular blades.

Keywords