Journal of Inequalities and Applications (Oct 2023)

Generalization of the Lehmer problem over incomplete intervals

  • Zhaoying Liu,
  • Di Han

DOI
https://doi.org/10.1186/s13660-023-03034-9
Journal volume & issue
Vol. 2023, no. 1
pp. 1 – 14

Abstract

Read online

Abstract Let α ≥ 2 $\alpha \geq 2$ , m ≥ 2 $m\geq 2 $ be integers, p be an odd prime with p ∤ m ( m + 1 ) $p\nmid m (m+1 )$ , 0 max { [ 1 λ 1 ] , [ 1 λ 2 ] } $q=p^{\alpha }> \max \{ [ \frac{1}{\lambda _{1}} ], [ \frac{1}{\lambda _{2}} ] \}$ . For any integer n with ( n , q ) = 1 $(n,q)=1$ and a nonnegative integer k, we define M λ 1 , λ 2 ( m , n , k ; q ) = ∑ ′ a = 1 q ∑ ′ b = 1 [ λ 1 q ] ∑ ′ c = 1 [ λ 2 q ] a b ≡ 1 ( mod q ) c ≡ a m ( mod q ) n ∤ b + c ( b − c ) 2 k . $$ M_{\lambda _{1},\lambda _{2}} ( m,n,k;q )=\mathop{\mathop{ \mathop{\mathop{{\sum }'}_{a=1}^{q}\mathop{{\sum }'}_{b=1}^{ [ \lambda _{1}q ]}\mathop{{\sum }'}_{c=1}^{ [\lambda _{2}q ]}}_{ab\equiv 1(\bmod q)}}_{c\equiv a^{m}(\bmod q)}}_{n\nmid b+c} ( b-c )^{2k}. $$ In this paper, we study the arithmetic properties of these generalized Kloosterman sums and give an upper bound estimation for it. By using the upper bound estimation, we discuss the properties of M λ 1 , λ 2 ( m , n , k ; q ) $M_{\lambda _{1},\lambda _{2}} ( m,n,k;q )$ and obtain an asymptotic formula.

Keywords