Nature Communications (May 2022)

Predicting the failure of two-dimensional silica glasses

  • Francesc Font-Clos,
  • Marco Zanchi,
  • Stefan Hiemer,
  • Silvia Bonfanti,
  • Roberto Guerra,
  • Michael Zaiser,
  • Stefano Zapperi

DOI
https://doi.org/10.1038/s41467-022-30530-1
Journal volume & issue
Vol. 13, no. 1
pp. 1 – 11

Abstract

Read online

The sheer number of parameters in deep learning makes the physical interpretation of failure predictions in glasses challenging. Here the authors use Grad-CAM to reveal the role of topological defects and local potential energies in failure predictions.