Advances in Civil Engineering (Jan 2021)

Theoretical and Experimental Studies of Two-Span Reinforced Concrete Deep Beams and Comparisons with Strut-and-Tie Method

  • Mahsa Zargarian,
  • Alireza Rahai

DOI
https://doi.org/10.1155/2021/8880067
Journal volume & issue
Vol. 2021

Abstract

Read online

Regarding the complicated behavior of continuous deep beams, a research program including three parts was conducted. First part: three continuous concrete deep beams with different shear span-to-depth ratios (a/h) were tested. The effects of varying a/h ratio on ultimate strength and failure modes were investigated. Second part: the nonlinear finite element (FE) analyses were performed to simulate the experimental specimens and 21 large-scale continuous deep beams. The main parameters investigated were a/h ratio from 0.33 to 2 and fc′ considered 40 MPa, 60 MPa, and 80 MPa. Third part: the strut-and-tie modeling of different design codes and indeterminate strut-tie method were studied for continuous deep beams. Regardless of the a/h ratio, all beam specimens failed in shear mode with main diagonal cracks. Although EC2 load prediction was conservative for all beam models, the ACI and CSA predictions for concrete deep beams with high compressive strength were unsafe. The indeterminate truss model showed closer results to FE analysis in comparison with ACI, EC2, and CSA strut-and-tie method.