BMC Medical Genomics (Jan 2022)

Evaluating the association of TRPA1 gene polymorphisms with pain sensitivity: a protocol for an adaptive recall by genotype study

  • Aidan P. Nickerson,
  • Laura J. Corbin,
  • Nicholas J. Timpson,
  • Keith Phillips,
  • Anthony E. Pickering,
  • James P. Dunham

DOI
https://doi.org/10.1186/s12920-022-01156-5
Journal volume & issue
Vol. 15, no. 1
pp. 1 – 11

Abstract

Read online

Abstract Background Pain is a complex polygenic trait whose common genetic underpinnings are relatively ill-defined due in part to challenges in measuring pain as a phenotype. Pain sensitivity can be quantified, but this is difficult to perform at the scale required for genome wide association studies (GWAS). Existing GWAS of pain have identified surprisingly few loci involved in nociceptor function which contrasts strongly with rare monogenic pain states. This suggests a lack of resolution with current techniques. We propose an adaptive methodology within a recall-by-genotype (RbG) framework using detailed phenotyping to screen minor alleles in a candidate ‘nociceptor’ gene in an attempt to estimate their genetic contribution to pain. Methods/design Participants of the Avon Longitudinal Study of Parents and Children will be recalled on the basis of genotype at five common non-synonomous SNPs in the ‘nociceptor’ gene transient receptor potential ankylin 1 (TRPA1). Those homozygous for the common alleles at each of the five SNPs will represent a control group. Individuals homozygous for the minor alleles will then be recruited in a series of three sequential test groups. The outcome of a pre-planned early assessment (interim) of the current test group will determine whether to continue recruitment or switch to the next test group. Pain sensitivity will be assessed using quantitative sensory testing (QST) before and after topical application of 10% cinnamaldehyde (a TRPA1 agonist). Discussion The design of this adaptive RbG study offers efficiency in the assessment of associations between genetic variation at TRPA1 and detailed pain phenotypes. The possibility to change the test group in response to preliminary data increases the likelihood to observe smaller effect sizes relative to a conventional multi-armed design, as well as reducing futile testing of participants where an effect is unlikely to be observed. This specific adaptive RbG design aims to uncover the influence of common TRPA1 variants on pain sensation but can be applied to any hypothesis-led genotype study where costly and time intensive investigation is required and / or where there is large uncertainty around the expected effect size. Trial registration: ISRCTN, ISRCTN16294731. Retrospectively registered 25th November 2021.

Keywords