International Journal of Polymer Science (Jan 2016)

Optimization of Process Parameters for ε-Polylysine Production by Response Surface Methods

  • Maxiaoqi Zhu,
  • Zhicai Zhang,
  • Yiqiuyi Liu,
  • Feng Wang,
  • Lili Xia,
  • Jianwei Xia,
  • Hongming Guo

DOI
https://doi.org/10.1155/2016/3785036
Journal volume & issue
Vol. 2016

Abstract

Read online

ε-Polylysine (ε-PL) is a highly safe natural food preservative with a broad antimicrobial spectrum, excellent corrosion resistances, and great commercial potentials. In the present work, we evaluated the ε-PL adsorption performances of HZB-3B and D155 resins and optimized the adsorption and desorption conditions by single-factor test, response surface method, and orthogonal design. The complexes of resin and ε-PL were characterized by SEM and FITR. The results indicated that D155 resin had the best ε-PL adsorption performance and was selected for the separation and purification of ε-PL. The conditions for the static adsorption of ε-PL on D155 resin were optimized as follows: ε-PL solution 40 g/L, pH 8.5, resins 15 g/L, and absorption time 14 h. The adsorption efficiency of ε-PL under the optimal conditions was 96.84%. The ε-PL adsorbed on the D155 resin was easily desorbed with 0.4 mol/L HCl at 30°C in 10 h. The highest desorption efficiency was 97.57% and the overall recovery of ε-PL was 94.49% under the optimal conditions. The excellent ε-PL adsorption and desorption properties of D155 resin including high selectivity and adsorption capacity, easy desorption, and high stability make it a good candidate for the isolation of ε-PL from fermentation broths.