Current Research in Structural Biology (Jan 2020)
Structure/Function Analysis of human ZnT8 (SLC30A8): A Diabetes Risk Factor and Zinc Transporter
Abstract
The human zinc transporter ZnT8 (SLC30A8) is expressed primarily in pancreatic β-cells and plays a key function in maintaining the concentration of blood glucose through its role in insulin storage, maturation and secretion. ZnT8 is an autoantigen for Type 1 diabetes (T1D) and is associated with Type 2 diabetes (T2D) through its risk allele that encodes a major non-synonymous single nucleotide polymorphism (SNP) at Arg325. Loss of function mutations improve insulin secretion and are protective against diabetes. Despite its role in diabetes and concomitant potential as a drug target, little is known about the structure or mechanism of ZnT8. To this end, we expressed ZnT8 in Pichia pastoris yeast and Sf9 insect cells. Guided by a rational screen of 96 detergents, we developed a method to solubilize and purify recombinant ZnT8. An in vivo transport assay in Pichia and a liposome-based uptake assay for insect-cell derived ZnT8 showed that the protein is functionally active in both systems. No significant difference in activity was observed between full-length ZnT8 (ZnT8A) and the amino-terminally truncated ZnT8B isoform. A fluorescence-based in vitro transport assay using proteoliposomes indicated that human ZnT8 functions as a Zn2+/H+ antiporter. We also purified E. coli-expressed amino- and carboxy-terminal cytoplasmic domains of ZnT8A. Circular dichroism spectrometry suggested that the amino-terminal domain contains predominantly α-helical structure, and indicated that the carboxy-terminal domain has a mixed α/β structure. Negative-stain electron microscopy and single-particle image analysis yielded a density map of ZnT8B at 20 Å resolution, which revealed that ZnT8 forms a dimer in detergent micelles. Two prominent lobes are ascribed to the transmembrane domains, and the molecular envelope recapitulates that of the bacterial zinc transporter YiiP. These results provide a foundation for higher resolution structural studies and screening experiments to identify compounds that modulate ZnT8 activity.