International Journal of Nanomedicine (Feb 2021)
Nanocarriers-Mediated Drug Delivery Systems for Anticancer Agents: An Overview and Perspectives
Abstract
Zehra Edis,1,2,* Junli Wang,3,* Muhammad Khurram Waqas,4 Muhammad Ijaz,5 Munazza Ijaz6 1Department of Pharmaceutical Sciences,College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates; 2Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates; 3Laboratory of Reproduction and Genetics, Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, Guangxi, People’s Republic of China; 4Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan; 5Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan; 6Institute of Molecular Biology and Biotechnology, The University of Lahore, Defense Road Campus, Lahore, Pakistan*These authors contributed equally to this workCorrespondence: Munazza IjazInstitute of Molecular Biology and Biotechnology, The University of Lahore, Defense Road Campus, Lahore, 54000, PakistanEmail [email protected]: Nanotechnology has been actively integrated as drug carriers over the last few years to treat various cancers. The main hurdle in the clinical management of cancer is the development of multidrug resistance against chemotherapeutic agents. To overcome the limitations of chemotherapy, the researchers have been developing technological advances for significant progress in the oncotherapy by enabling the delivery of chemotherapeutic agents at increased drug content levels to the targeted spots. Several nano-drug delivery systems designed for tumor-targeting are evaluated in preclinical and clinical trials and showed promising outcomes in cancerous tumors’ clinical management. This review describes nanocarrier’s importance in managing different types of cancers and emphasizing nanocarriers for drug delivery and cancer nanotherapeutics. It also highlights the recent advances in nanocarriers-based delivery systems, including polymeric nanocarriers, micelles, nanotubes, dendrimers, magnetic nanoparticles, solid lipid nanoparticles, and quantum dots (QDs). The nanocarrier-based composites are discussed in terms of their structure, characteristics, and therapeutic applications in oncology. To conclude, the challenges and future exploration opportunities of nanocarriers in chemotherapeutics are also presented.Keywords: nanomaterials, anticancer agents, recent advances, multidrug resistance, chemotherapy