Sensors (Jun 2023)

Fall Recognition Based on an IMU Wearable Device and Fall Verification through a Smart Speaker and the IoT

  • Hsin-Chang Lin,
  • Ming-Jen Chen,
  • Chao-Hsiung Lee,
  • Lu-Chih Kung,
  • Jung-Tang Huang

DOI
https://doi.org/10.3390/s23125472
Journal volume & issue
Vol. 23, no. 12
p. 5472

Abstract

Read online

A fall is one of the most devastating events that aging people can experience. Fall-related physical injuries, hospital admission, or even mortality among the elderly are all critical health issues. As the population continues to age worldwide, there is an imperative need to develop fall detection systems. We propose a system for the recognition and verification of falls based on a chest-worn wearable device, which can be used for elderly health institutions or home care. The wearable device utilizes a built-in three-axis accelerometer and gyroscope in the nine-axis inertial sensor to determine the user’s postures, such as standing, sitting, and lying down. The resultant force was obtained by calculation with three-axis acceleration. Integration of three-axis acceleration and a three-axis gyroscope can obtain a pitch angle through the gradient descent algorithm. The height value was converted from a barometer. Integration of the pitch angle with the height value can determine the behavior state including sitting down, standing up, walking, lying down, and falling. In our study, we can clearly determine the direction of the fall. Acceleration changes during the fall can determine the force of the impact. Furthermore, with the IoT (Internet of Things) and smart speakers, we can verify whether the user has fallen by asking from smart speakers. In this study, posture determination is operated directly on the wearable device through the state machine. The ability to recognize and report a fall event in real-time can help to lessen the response time of a caregiver. The family members or care provider monitor, in real-time, the user’s current posture via a mobile device app or internet webpage. All collected data supports subsequent medical evaluation and further intervention.

Keywords