Water (Mar 2024)

Analysis of the Spatial Spillover Effect and Impact Transmission Mechanism of China’s Water Network by Constructing a Water Transfer Information Weight Matrix

  • Junyan Gao,
  • Feng Chen,
  • Xiangtian Nie,
  • Xuewan Du

DOI
https://doi.org/10.3390/w16060809
Journal volume & issue
Vol. 16, no. 6
p. 809

Abstract

Read online

In China, the water network project plays a pivotal role in optimizing water resources allocation, enhancing regional water resources carrying capacity, and bolstering high-quality economic development. This study is grounded in the spatial interconnection of water resources, serving as the foundation for constructing a spatial measurement model. Leveraging data from 558 panel samples encompassing 31 provinces (including municipalities and districts) in China between 2003 and 2020, this research unveils the inherent correlation between the establishment of the water network and economic as well as social development. The findings indicate the following: (1) Considering inputs, outputs, and nonconsensual outputs, regional disparities in the SBM (slacks-based measure) value of the water network exist, demonstrating an overall increasing trend annually. In 2020, the nationwide average benefit level of input–output in water network construction reached 0.603. (2) Moran’s I test, predicated on the weight matrix of spatial water transfer information, reveals a spatial positive autocorrelation. All tests pass the significance threshold of 5%, affirming the presence of spatial agglomeration due to project construction, operation, and the interconnectedness of water resources. (3) SDM (spatial Durbin model) regression analysis elucidates that per capita GDP, resource endowment, technological innovation level, consumption index, and average wage significantly influence the growth of water network efficiency. Specifically, per capita GDP and the consumption index exert negative influences. Moreover, aspects such as regional resource endowment, technological innovation level, industrial and agricultural water demand, average wage, and other spatial dependencies exhibit a notable positive spatial spillover effect. (4) The SDM model suggests that per capita GDP growth fails to yield a significant spatial spillover effect on neighboring regions. Instead, it highlights a substantial indirect effect and spatial dependence of government attention among regions. These analyses are instrumental in optimizing the water resources allocation network system and enhancing investment efficacy.

Keywords