Malaria Journal (Aug 2024)

A review of selective indoor residual spraying for malaria control

  • Seth R. Irish,
  • Derric Nimmo,
  • Jameel Bharmel,
  • Frederic Tripet,
  • Pie Müller,
  • Pablo Manrique-Saide,
  • Sarah J. Moore

DOI
https://doi.org/10.1186/s12936-024-05053-3
Journal volume & issue
Vol. 23, no. 1
pp. 1 – 12

Abstract

Read online

Abstract Background Indoor residual spraying (IRS) is one of the most effective malaria control tools. However, its application has become limited to specific contexts due to the increased costs of IRS products and implementation programmes. Selective spraying—selective spray targeted to particular areas/surfaces of dwellings—has been proposed to maintain the malaria control and resistance-management benefits of IRS while decreasing the costs of the intervention. Methods A literature search was conducted to find (1) studies that assessed the resting behaviour of Anopheles mosquitoes and (2) studies that evaluated the impact of selective spraying on entomological and malaria outcomes. Additional articles were identified through hand searches of all references cited in articles identified through the initial search. A cost model was developed from PMI VectorLink IRS country programmes, and comparative cost analysis reports to describe the overall cost benefits of selective IRS. Results In some studies, there appeared to be a clear resting preference for certain Anopheles species in terms of the height at which they rested. However, for other species, and particularly the major African malaria vectors, a clear resting pattern was not detected. Furthermore, resting behaviour was not measured in a standardized way. For the selective spray studies that were assessed, there was a wide range of spray configurations, which complicates the comparison of methods. Many of these spray techniques were effective and resulted in reported 25–68% cost savings and reduced use of insecticide. The reported cost savings in the literature do not always consider all of the IRS implementation costs. Using the IRS cost model, these savings ranged from 17 to 29% for programs that targeted Anopheles spp. and 18–41% for programmes that targeted Aedes aegypti. Conclusions Resting behaviour is generally measured in a simplistic way; noting the resting spot of mosquitoes in the morning. This is likely an oversimplification, and there is a need for better monitoring of resting mosquitoes. This may improve the target surface for selective spray techniques, which could reduce the cost of IRS while maintaining its effectiveness. Reporting of cost savings should be calculated considering the entire implementation costs, and a cost model was provided for future calculations.

Keywords