Diversity (Dec 2021)

The Influence of Climate Change on Three Dominant Alpine Species under Different Scenarios on the Qinghai–Tibetan Plateau

  • Huawei Hu,
  • Yanqiang Wei,
  • Wenying Wang,
  • Chunya Wang

DOI
https://doi.org/10.3390/d13120682
Journal volume & issue
Vol. 13, no. 12
p. 682

Abstract

Read online

The Qinghai–Tibetan Plateau (QTP) with high altitude and low temperature is one of the most sensitive areas to climate change and has recently experienced continuous warming. The species distribution on the QTP has undergone significant changes especially an upward shift with global warming in the past decades. In this study, two dominant trees (Picea crassifolia Kom and Sabina przewalskii Kom) and one dominant shrub (Potentilla parvifolia Fisch) were selected and their potential distributions using the MaxEnt model during three periods (current, the 2050s and the 2070s) were predicted. The predictions were based on four shared socio-economic pathway (SSPs) scenarios, namely, SSP2.6, SSP4.5, SSP7.0, SSP8.5. The predicted current potential distribution of three species was basically located in the northeastern of QTP, and the distribution of three species was most impacted by aspect, elevation, temperature seasonality, annual precipitation, precipitation of driest month, Subsoil CEC (clay), Subsoil bulk density and Subsoil CEC (soil). There were significant differences in the potential distribution of three species under four climate scenarios in the 2050s and 2070s including expanding, shifting, and shrinking. The total suitable habitat for Picea crassifolia shrank under SSP2.6, SSP4.5, SSP7.0 and enlarged under SSP8.5 in the 2070s. On the contrary, the total suitable habitat for Sabina przewalskii enlarged under SSP2.6, SSP4.5, SSP7.0 and shrank under SSP8.5 in the 2070s. The total suitable habitat for Potentilla parvifolia continued to increase with SSP2.6 to SSP8.5 in the 2070s. The average elevation in potentially suitable habitat for Potentilla parvifolia all increased except under SSP8.5 in the 2050s. Our study provides an important reference for the conservation of Picea crassifolia, Sabina przewalskii, Potentilla parvifolia and other dominant plant species on the QTP under future climate change.

Keywords