Prevention of Cadmium Contamination by Microbial Inoculant and Its Potential Mechanism
Ximei Xu,
Xiaofeng Yue,
Du Wang,
Mengxue Fang,
Li Yu,
Fei Ma,
Nanri Yin,
Xuefang Wang,
Baocheng Xu,
Liangxiao Zhang,
Peiwu Li
Affiliations
Ximei Xu
College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
Xiaofeng Yue
Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs; Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
Du Wang
Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs; Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
Mengxue Fang
Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs; Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
Li Yu
Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs; Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
Fei Ma
Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs; Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
Nanri Yin
Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs; Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
Xuefang Wang
Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs; Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
Baocheng Xu
College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
Liangxiao Zhang
Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs; Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
Peiwu Li
Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs; Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
Cadmium is the main heavy metal contaminant of food in the world. The extent of cadmium pollution in peanut in China remains unclear. To determine the cadmium pollution level in peanut, samples from the main producing regions in China were assessed. The findings revealed that the cadmium pollution level in Chinese peanuts was relatively low. Moreover, the Aflatoxin Rhizobia Couple B. amyloliquefaciens, B. laterosporu, B. mucilaginosus, E. ludwiggi (ARC-BBBE) microbial inoculants on cadmium contamination in peanut were evaluated. The fertilization methods were categorized into conventional fertilization and conventional fertilization supplemented with 60 kg/hectare of microbial inoculant ARC-BBBE as the base fertilizer. The cadmium contents in the soil and peanut plant parts were detected and analyzed. The results demonstrated that the microbial inoculant ARC-BBBE significantly reduced the total cadmium content in peanut, as well as the available cadmium and exchangeable cadmium in soil. Furthermore, the pH and urease and alkaline phosphatase activities in soil were significantly enhanced, suggesting that the microbial inoculant ARC-BBBE decreased cadmium content in soil and reduced the cadmium uptake by plants through a combination of the action of the bacteria itself and the secretion of extracellular substances. This ultimately achieves the goal of reducing the cadmium content in peanut seeds.