EPJ Web of Conferences (Jan 2015)

Strain-rate dependence for Ni/Al hybrid foams

  • Jung Anne,
  • Larcher Martin,
  • Jirousek Ondrej,
  • Koudelka Petr,
  • Solomos George

DOI
https://doi.org/10.1051/epjconf/20159404030
Journal volume & issue
Vol. 94
p. 04030

Abstract

Read online

Shock absorption often needs stiff but lightweight materials that exhibit a large kinetic energy absorption capability. Open-cell metal foams are artificial structures, which due to their plateau stress, including a strong hysteresis, can in principle absorb large amounts of energy. However, their plateau stress is too low for many applications. In this study, we use highly novel and promising Ni/Al hybrid foams which consist of standard, open-cell aluminium foams, where nanocrystalline nickel is deposited by electrodeposition as coating on the strut surface. The mechanical behaviour of cellular materials, including their behaviour under higher strain-rates, is governed by their microstructure due to the properties of the strut material, pore/strut geometry and mass distribution over the struts. Micro-inertia effects are strongly related to the microstructure. For a conclusive model, the exact real microstructure is needed. In this study a micro-focus computer tomography (μCT) system has been used for the analysis of the microstructure of the foam samples and for the development of a microstructural Finite Element (micro-FE) mesh. The microstructural FE models have been used to model the mechanical behaviour of the Ni/Al hybrid foams under dynamic loading conditions. The simulations are validated by quasi-static compression tests and dynamic split Hopkinson pressure bar tests.