Clinical Phytoscience (Jan 2022)

Molecular interaction of bioactive compounds from Senecio biafrae leaf with α-amylase and α-glucosidase receptors

  • Basiru Olaitan Ajiboye

DOI
https://doi.org/10.1186/s40816-021-00335-8
Journal volume & issue
Vol. 8, no. 1
pp. 1 – 17

Abstract

Read online

Abstract Background Diabetes mellitus is one of the silent killer diseases affecting millions of people globally and some of the key enzymes in managing this disease are α-amylase and α-glucosidase This study was designed to investigate the possible molecular interactions between various bioactive compounds of Senecio biafrae leaf on α-amylase and α-glucosidase (enzymes) receptors an important target protein in Type 2 diabetes mellitus. Methods This study involved the investigation of the of gallic acid, chlorogenic, caffeic acid, rutin, quercetin, and kaempferol (ligands) for Lipinski’s rule of five using Molinspiration, ADMET profiles using admetSAR server and molecular docking of 3D structures of the six bioactive compounds and metformin against α-amylase and α-glucosidase were carried out using AutoDockVina. Results The results revealed that caffeic acid, quercetin, and kaempferol obey Lipinski’s rule of five. All the ligands demonstrated high gastrointestinal tract absorption except rutin and chlorogenic acid, only one can serve as a P-glycoprotein substrate and three of the ligands used can act as cytochrome P450 inhibitors isoforms. All the ligands had a high binding affinity than metformin (the standard drug used). Conclusion In can be concluded that some of the bioactive compounds (especially caffeic acid) in Senecio biafrae leaf have antidiabetic activity, which they may serve as a potential antidiabetic drug in the management of diabetes mellitus than metformin.

Keywords