Actuators (May 2024)
The Effect of Arm Movements on the Dynamics of the Wheelchair Frame during Manual Wheelchair Actuation and Propulsion
Abstract
Wheelchair propulsion and actuation are influenced by the moving masses of the wheelchair user; however, the extent of this effect is still unclear. The main evidence of this effect is that the speed of the wheelchair frame continues to increase after the end of the push phase. The wheelchair’s speed was measured using IMUs and the duration of the push period was recorded using miniaturised pressure sensors attached to the driver’s middle fingers. The velocity and acceleration were determined for various average stroke cycle speeds to determine the speed dependency of the acceleration. The wheelchair was then mounted on a force plate to measure the inertial forces of the hands moving back and forth. The aerodynamic drag and rolling resistance forces were determined from coast-down experiments. Based on the measured forces, the behaviour of the force and velocity profiles was finally modelled by gradually reducing the mass of the arms and thus their inertial force. The results showed that the wheelchair is accelerated throughout the push phase (except for a temporary deceleration in the middle of the push phase at higher velocities), and that this acceleration continues well after the push phase. In the second half of the recovery phase, the wheelchair decelerates. The horizontal inertial forces measured on the force plate are predominantly negative in the push phase and in the second half of the recovery phase, and positive in the first half of the push phase, and their impulse is zero due to the conservation of momentum. Modelling the wheelchair with moving masses showed that reducing the horizontal inertial forces has no effect on the driver’s propulsive force but reduces the velocity fluctuations. The main conclusion of this research is that the wheelchair user’s power should be calculated only from the pure propulsive force that is required in the push phase to overcome the dissipative forces and that enables the gain or loss in speed per stroke cycle, but not directly from the measured velocity.
Keywords