Plants (Mar 2021)

The Metabolite Profile in Culture Supernatant of <i>Aster yomena</i> Callus and Its Anti-Photoaging Effect in Skin Cells Exposed to UVB

  • Woo Sik Kim,
  • Jeong Hun Seo,
  • Jae-In Lee,
  • Eun-Sil Ko,
  • Sang-Min Cho,
  • Jea-Ran Kang,
  • Jong-Hoon Jeong,
  • Yu Jeong Jeong,
  • Cha Young Kim,
  • Jeong-Dan Cha,
  • Young-Bae Ryu

DOI
https://doi.org/10.3390/plants10040659
Journal volume & issue
Vol. 10, no. 4
p. 659

Abstract

Read online

Aster yomena (A. yomena) extract has anti-inflammatory, antioxidant, anti-asthma, and anti-atopic effects. However, the commercial use of A. yomena extract requires a long processing time with specific processing steps (including heat treatment and ethanol precipitation), and there are various environmental problems. We aimed to build a system to produce A. yomena extract by culturing the callus in a bioreactor that can allow rapid process scale-up to test the effect of extract (AYC-CS-E) isolated from culture supernatant of A. yomena callus on photoaging of human keratinocytes (HaCaT) caused by ultraviolet B (UVB) exposure. Through screening analysis based on ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF-MS), 17 major metabolites were tentatively identified from AYC-CS-E for the first time. The suppression of cell proliferation caused by UVB was effectively alleviated in UVB-irradiated HaCaT cells treated with AYC-CS-E. Treatment with AYC-CS-E strongly induced the formation of type I procollagen and the inhibition of elastase in UVB-irradiated HaCaT cells and significantly reduced the expression of matrix metalloproteinase (MMP)-1. In addition, treatment of UVB-irradiated HaCaT cells with AYC-CS-E effectively improved various factors associated with an inflammatory reaction, skin damage recovery, skin moisture retention, and hyper-keratinization caused by photoaging, such as reactive oxygen species (ROS), pro-inflammatory cytokines, transforming growth factor beta (TGF-β), MMP-3, MMP-9, filaggrin, hyaluronic acid synthase 2 (HAS-2), keratin 1 (KRT-1), nuclear factor-kappa B (NF-κB), and nuclear factor erythroid 2-related factor 2 (Nrf2) at the gene and protein levels. These results suggest that AYC-CS-E can be used as a cosmetic ingredient for various skin diseases caused by photoaging, and the current callus culture system can be used commercially to supply cosmetic ingredients.

Keywords