Frontiers in Neural Circuits (Oct 2012)
Inhibition shapes selectivity to vocalizations in the inferior colliculus of awake mice
Abstract
The inferior colliculus (IC) is a major center for integration of auditory information as itreceives ascending projections from a variety of brainstem nuclei as well as descending projectionsfrom the thalamus and auditory cortex. The ascending projections are both excitatory andinhibitory and their convergence at the IC results in a microcircuitry that is important forshaping responses to simple, binaural, and modulated sounds in the IC. Here, we examined therole inhibition plays in shaping selectivity to vocalizations in the IC of awake, normal-hearingadult mice (CBA/CaJ strain). Neurons in the IC of mice show selectivity in their responses tovocalizations, and we hypothesized that this selectivity is created by inhibitory microcircuitryin the IC. We compared single unit responses in the IC to pure tones and a variety of ultrasonicmouse vocalizations before and after iontophoretic application of GABAA receptor (GABAAR)and glycine receptor (GlyR) antagonists. The most pronounced effects of blocking GABAAR andGlyR on IC neurons were to increase spike rates and broaden excitatory frequency tuning curvesin response to pure tone stimuli, and to decrease selectivity to vocalizations. Thus, inhibitionplays an important role in creating selectivity to vocalizations in the inferior colliculus.
Keywords