Drug Design, Development and Therapy (Mar 2015)

A pharmacokinetic and pharmacodynamic drug interaction between rosuvastatin and valsartan in healthy subjects

  • Jung JA,
  • Lee SY,
  • Kim JR,
  • Ko JW,
  • Jang SB,
  • Nam SY,
  • Huh W

Journal volume & issue
Vol. 2015, no. default
pp. 745 – 752

Abstract

Read online

Jin Ah Jung,1 Soo-Yun Lee,2 Jung-Ryul Kim,1 Jae-Wook Ko,1,2 Seong Bok Jang,3 Su Youn Nam,3 Wooseong Huh1,41Department of Clinical Pharmacology and Therapeutics, Samsung Medical Center, 2Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, 3Yuhan Research Institute, Yuhan Corporation, 4Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, KoreaPurpose: Valsartan, an angiotensin-receptor blocker, and rosuvastatin, a competitive inhibitor of the 3-hydroxy-3-methylglutaryl coenzyme A reductase, are frequently coadministered to treat patients with hypertension and dyslipidemia. The study reported here sought to evaluate the pharmacokinetic and pharmacodynamic interactions between rosuvastatin and valsartan in healthy Korean subjects. Subjects and methods: Thirty healthy male Korean subjects were administered with rosuvastatin (20 mg/day), valsartan (160 mg/day), and both drugs concomitantly for 4 days in a randomized, open-label, multiple-dose, three-treatment, three-period crossover study. Plasma concentrations of rosuvastatin, N-desmethyl rosuvastatin, and valsartan were determined using validated high-performance liquid chromatography with tandem mass spectrometry. Lipid profiles and vital signs (systolic and diastolic blood pressure and pulse rate) were measured for the pharmacodynamic assessment.Results: For rosuvastatin, the geometric mean ratios (90% confidence intervals [CIs]) of coadministration to mono-administration were 0.8809 (0.7873-0.9857) for maximum plasma concentration at steady state and 0.9151 (0.8632-0.9701) for area under the concentration–time curve (AUC) over a dosing interval at steady state. For valsartan, the geometric mean ratios (90% CIs) of those were 0.9300 (0.7946-1.0884) and 1.0072 (0.8893-1.1406), respectively. There were no significant differences in the metabolic ratio of N-desmethyl rosuvastatin AUC to rosuvastatin AUC between coadministration and rosuvastatin alone. No interaction was found in terms of systolic or diastolic blood pressure or lipid profiles. Combined treatment with valsartan and rosuvastatin was generally well tolerated without serious adverse events.Conclusion: The pharmacokinetic profiles of rosuvastatin and valsartan in combination were comparable with those of rosuvastatin and valsartan administered individually, suggesting that their individual pharmacokinetics were not affected by their coadministration. No dose adjustment was required and the results are supportive of a study in a larger patient population.Keywords: pharmacokinetics, pharmacodynamics, hypertension, dyslipidemia