Кібернетика та комп'ютерні технології (Dec 2022)

Mathematical Model and Solution Algorithm for Virtual Localization Problem

  • Sergiy Plankovskyy,
  • Yevgen Tsegelnyk,
  • Oleksandr Pankratov,
  • Tetyana Romanova,
  • Serhiy Maximov,
  • Volodymyr Kombarov

DOI
https://doi.org/10.34229/2707-451X.22.4.3
Journal volume & issue
no. 4
pp. 33 – 44

Abstract

Read online

Introduction. The optimization placement problem refereed to virtual localization is studied. This problem is motivated by the need to optimize the production of parts from near-net shape blanks using CNC machines. The known algorithms for solving the virtual localization problem come down to determining the location parameters of the part CAD model inside the point cloud obtained by scanning the workpiece surface. The main disadvantage of such algorithms is the use of criteria that are insensitive to the intersection of the surfaces of the part and the workpiece. In order to prevent such errors in production conditions, it is necessary to involve a human operator in conducting operations based on virtual localization. In this way, the virtual localization problem of complex shape objects is of paramount importance. The purpose of the paper is to propose a new approach for solving the virtual localization problem. Results. A new mathematical model of the virtual localization problem based on the phi-function technique is proposed. We developed a solution strategy that combines algorithm of generating feasible starting points with non-linear optimization procedure. The testing of the proposed approach was carried out for a two-dimensional case. The computational results illustrated with graphical illustrations are provided that show the efficiency of the proposed algorithm. Conclusions. The obtained results show that the use of the phi-functions technique prevents the occurrence of erroneous solutions with the intersection of the workpiece surfaces. An algorithm for solving the problem of virtual localization in a two-dimensional formulation for the case when the part and the workpiece are convex polygons has been developed. For the considered test problems, the solution time did not exceed 2.5 sec, which fully meets the requirements of industrial use. In the future, it is planned to extend the proposed method to the cases when the CAD model of the part has an arbitrary shape and is formed by Boolean operations on geometric primitives.

Keywords