Minerals (Jul 2024)

Chromite Composition and Platinum-Group Elements Distribution in Tethyan Chromitites of the Mediterranean Basin: An Overview

  • Federica Zaccarini,
  • Maria Economou-Eliopoulos,
  • Basilios Tsikouras,
  • Giorgio Garuti

DOI
https://doi.org/10.3390/min14080744
Journal volume & issue
Vol. 14, no. 8
p. 744

Abstract

Read online

This study provides a comprehensive literature review of the distribution, the platinum- group elements (PGE) composition, and mineral chemistry of chromitites associated with Mesozoic Tethyan ophiolites in the Mediterranean Basin. These suites outcrop in the northern Italian Apennines, the Balkans, Turkey, and Cyprus. Most chromitites occur in depleted mantle tectonites, with fewer found in the mantle-transition zone (MTZ) and supra-Moho cumulates. Based on their Cr# = (Cr/(Cr + Al)) values, chromitites are primarily classified as high-Cr, with a subordinate presence of high-Al chromitites. Occasionally, high-Al and high-Cr chromitites co-exist within the same ophiolite complex. High-Cr chromitites are formed in supra-subduction zone (SSZ) environments, where depleted mantle interacts with high-Mg boninitic melts. Conversely, high-Al chromitites are typically associated with extensional tectonic regimes and more fertile peridotites. The co-existence of high-Al and high-Cr chromitites within the same ophiolite is attributed to tectonic movements and separate magma intrusions from variably depleted mantle sources, such as mid-ocean ridge basalts (MORB) and back-arc basin basalts. These chromitites formed in different geodynamic settings during the transition of the oceanic lithosphere from a mid-ocean ridge (MOR) to a supra-subduction zone (SSZ) regime or, alternatively, within an SSZ during the differentiation of a single boninitic magma batch. Distinct bimodal distribution and vertical zoning were observed: high-Cr chromitites formed in the deep mantle, while Al-rich counterparts formed at shallower depths near the MTZ. Only a few of the aforementioned chromitites, particularly the high-Cr ones, are enriched in the refractory IPGE (iridium-group PGE: Os, Ir, Ru) relative to PPGE (palladium-group PGE: Rh, Pt, Pd), with an average PPGE/IPGE ratio of 0.66, resulting in well-defined negative slopes in PGE patterns. The IPGE enrichment is attributed to their compatible geochemical behavior during significant degrees of partial melting (up to 30%) of the host mantle. It is suggested that the boninitic melt, which crystallized the high-Cr chromitites, was enriched in IPGE during melt-rock reactions with the mantle source, thus enriching the chromitites in IPGE as well. High-Al chromitites generally exhibit high PPGE/IPGE ratios, up to 3.14, and strongly fractionated chondrite-normalized PGE patterns with positive slopes and significant enrichments in Pt and Pd. The PPGE enrichment in high-Al chromitites is attributed to the lower degree of partial melting of their mantle source and crystallization from a MOR-type melt, which contains fewer IPGE than the boninitic melt above. High-Al chromitites forming at higher stratigraphic levels in the host ophiolite likely derive from progressively evolving parental magma. Thus, the PPGE enrichment in high-Al chromitites is attributed to crystal fractionation processes that consumed part of the IPGE during the early precipitation of co-existing high-Cr chromitites in the deep mantle. Only a few high-Al chromitites show PPGE enrichment due to local sulfur saturation and the potential formation of an immiscible sulfide liquid, which could concentrate the remaining PPGE in the ore-forming system.

Keywords