Cellular & Molecular Biology Letters (Nov 2023)

GCN5L1 regulates pulmonary surfactant production by modulating lamellar body biogenesis and trafficking in mouse alveolar epithelial cells

  • Wenqin Xu,
  • Xiaocui Ma,
  • Qing Wang,
  • Jingjing Ye,
  • Nengqian Wang,
  • Zhenzhen Ye,
  • Tianbing Chen

DOI
https://doi.org/10.1186/s11658-023-00506-0
Journal volume & issue
Vol. 28, no. 1
pp. 1 – 21

Abstract

Read online

Abstract Background The pulmonary surfactant that lines the air–liquid surface within alveoli is a protein–lipid mixture essential for gas exchange. Surfactant lipids and proteins are synthesized and stored in the lamellar body (LB) before being secreted from alveolar type II (AT2) cells. The molecular and cellular mechanisms that regulate these processes are incompletely understood. We previously identified an essential role of general control of amino acid synthesis 5 like 1 (GCN5L1) and the biogenesis of lysosome-related organelle complex 1 subunit 1 (BLOS1) in surfactant system development in zebrafish. Here, we explored the role of GCN5L1 in pulmonary surfactant regulation. Method GCN5L1 knockout cell lines were generated with the CRISPR/Cas9 system. Cell viability was analyzed by MTT assay. Released surfactant proteins were measured by ELISA. Released surfactant lipids were measured based on coupled enzymatic reactions. Gene overexpression was mediated through lentivirus. The RNA levels were detected through RNA-sequencing (RNA-seq) and quantitative reverse transcription (qRT)- polymerase chain reaction (PCR). The protein levels were detected through western blotting. The cellular localization was analyzed by immunofluorescence. Morphology of the lamellar body was analyzed through transmission electron microscopy (TEM), Lysotracker staining, and BODIPY phosphatidylcholine labeling. Results Knocking out GCN5L1 in MLE-12 significantly decreased the release of surfactant proteins and lipids. We detected the downregulation of some surfactant-related genes and misregulation of the ROS–Erk–Foxo1–Cebpα axis in mutant cells. Modulating the activity of the axis or reconstructing the mitochondrial expression of GCN5L1 could partially restore the expression of these surfactant-related genes. We further showed that MLE-12 cells contained many LB-like organelles that were lipid enriched and positive for multiple LB markers. These organelles were smaller in size and accumulated in the absence of GCN5L1, indicating both biogenesis and trafficking defects. Accumulated endogenous surfactant protein (SP)-B or exogenously expressed SP-B/SP-C in adenosine triphosphate-binding cassette transporterA3 (ABCA3)-positive organelles was detected in mutant cells. GCN5L1 localized to the mitochondria and LBs. Reconstruction of mitochondrial GCN5L1 expression rescued the organelle morphology but failed to restore the trafficking defect and surfactant release, indicating specific roles associated with different subcellular localizations. Conclusions In summary, our study identified GCN5L1 as a new regulator of pulmonary surfactant that plays a role in the biogenesis and positioning/trafficking of surfactant-containing LBs.

Keywords