PLoS ONE (Jan 2016)

Differential Contribution of Malic Enzymes during Soybean and Castor Seeds Maturation.

  • Mariel Claudia Gerrard Wheeler,
  • Cintia Lucía Arias,
  • Silvana Righini,
  • Mariana Beatriz Badia,
  • Carlos Santiago Andreo,
  • María Fabiana Drincovich,
  • Mariana Saigo

DOI
https://doi.org/10.1371/journal.pone.0158040
Journal volume & issue
Vol. 11, no. 6
p. e0158040

Abstract

Read online

Malic enzymes (ME) catalyze the decarboxylation of malate generating pyruvate, CO2 and NADH or NADPH. In some organisms it has been established that ME is involved in lipids biosynthesis supplying carbon skeletons and reducing power. In this work we studied the MEs of soybean and castor, metabolically different oilseeds. The comparison of enzymatic activities, transcript profiles and organic acid contents suggest different metabolic strategies operating in soybean embryo and castor endosperm in order to generate precursors for lipid biosynthesis. In castor, the malate accumulation pattern agrees with a central role of this metabolite in the provision of carbon to plastids, where the biosynthesis of fatty acids occurs. In this regard, the genome of castor possesses a single gene encoding a putative plastidic NADP-ME, whose expression level is high when lipid deposition is active. On the other hand, NAD-ME showed an important contribution to the maturation of soybean embryos, perhaps driving the carbon relocation from mitochondria to plastids to support the fatty acids synthesis in the last stages of seed filling. These findings provide new insights into intermediary metabolism in oilseeds and provide new biotechnological targets to improve oil yields.