Информатика и автоматизация (Nov 2023)

Аппроксимация временных рядов индексов вегетации (NDVI и EVI) для мониторинга сельхозкультур (посевов) Хабаровского края

  • Alexey Stepanov,
  • Elizaveta Fomina,
  • Lyubov Illarionova,
  • Konstantin Dubrovin,
  • Denis Fedoseev

DOI
https://doi.org/10.15622/ia.22.6.8
Journal volume & issue
Vol. 22, no. 6
pp. 1473 – 1498

Abstract

Read online

Аппроксимация рядов сезонного хода индексов вегетации является основой для эффективного мониторинга сельскохозяйственных культур, их идентификации и автоматизированной классификации пахотных земель. Для пахотных земель Хабаровского края в период с мая по октябрь 2021 года по мультиспектральным снимкам Sentinel-2A (20 м) с использованием маски облачности были построены временные ряды NDVI и EVI. Для приближения временных рядов были использованы пять видов аппроксимирующих функций: функция Гаусса; двойная гауссиана; двойная синусоида; ряд Фурье; двойная логистическая. Были построены и рассчитаны характеристики экстремумов аппроксимированных временных рядов для разных типов пахотных земель: гречихи, многолетних трав, сои, залежи и пара. Было показано, что для каждой сельхозкультуры аппроксимированные кривые сезонного хода имели характерный вид. Как было достоверно установлено (p<0,05), наиболее высокую точность аппроксимации рядов NDVI и EVI показал ряд Фурье (средняя ошибка составила, соответственно, 8,5% и 16,0%). Аппроксимация рядов NDVI с использованием двойной синусоиды, двойной гауссианы и двойной логистической функции приводила к увеличению ошибки до 8,9-10,6%. Аппроксимация рядов EVI на основе двойной гауссианы и двойной синусоиды способствовала росту средней ошибки до 18,3-18,5%. Проведенный апостериорный анализ с использованием критерия Тьюки показал, что для полей с соей, парующих и залежных земель для приближения индексов вегетации достоверно лучше использовать ряд Фурье, двойную гауссиану или двойную синусоиду, для полей с гречихой целесообразно применять ряд Фурье или двойную гауссиану. В целом, средняя ошибка аппроксимации сезонных временных рядов NDVI в 1,5-4 раза меньше, чем ошибка аппроксимации рядов EVI.

Keywords