Poultry Science (Sep 2024)
Integrative metabolomics and transcriptomics analysis revealed specific genes and metabolites affecting meat quality of chickens under different rearing systems
Abstract
ABSTRACT: Different rearing systems have varying effect on animal welfare and meat quality of poultry. Currently, there are no established standards for the rearing systems of Chinese indigenous chickens. Our study aimed to investigate the effects of different rearing systems on the meat quality, gene profiles, and metabolites of Chinese indigenous chickens (Nanchuan chicken). 10-wk-old Nanchuan chickens (n=360) were randomly divided into 3 groups (cage, net, and free-range groups), with 6 replicates per group (20 chickens per replicate). The experiment lasted for 12 wk. At 154-days-old, 36 healthy chickens (6 males and 6 females per group) were randomly selected, euthanized, and their breast muscles were collected to assess the meat quality parameters and histomorphological characteristics. Additionally, breast muscles from 18 random hens (3 males and 3 females per group) were used for metabolomics and RNA-seq analysis. The results showed that rearing systems significantly affected the meat quality and myofiber characteristics. The meat quality of breast muscles from free-range chickens was superior to that of caged chickens, characterized by more tender meat and smaller myofiber cross-sectional areas. Integrative metabolomics and transcriptomics analysis revealed that the differentially expressed genes of chicken breast muscles were primarily involved in the myofiber differentiation. Mechanically, the improved meat quality of breast muscle in free-range chickens were mainly associated with enhanced skeletal muscle differentiation facilitated by fibromodulin, increased levels of up-regulated Acetyl-L-carnitine and Propionylcarnitine level, and decreased levels of Nonanoic acid and Elaidic acid abundance (Graphical abstract). This provides a comprehensive understanding of the most effective and sustainable breeding, production, and rearing systems for Chinese indigenous chickens. It also contributes to the current knowledge of the molecular mechanisms underlying the effects of rearing systems on growth performance and meat quality of chickens.