Advances in Mathematical Physics (Jan 2024)
New Multilinear Variable Separation Solutions of the (3 + 1)-Dimensional Burgers Hierarchy
Abstract
The multilinear variable separation (MLVS) approach has been proven to be very useful in solving (2 + 1)-dimensional integrable systems. Taking the (3 + 1)-dimensional Burgers hierarchy as an example, we extend the MLVS approach to a whole family of (3 + 1)-dimensional Burgers hierarchy. New exact solutions and universal formulas are obtained, which lead to abundant (3 + 1)-dimensional coherent structures. In particular, two ring-type soliton molecules and their interactions are shown in detail. We also generalize the MLVS results of the (3 + 1)-dimensional Jimbo–Miwa (JM) equation and modified JM equation.