Diabetology & Metabolic Syndrome (Oct 2021)

LncRNA KCNQ1OT1 promotes the development of diabetic nephropathy by regulating miR-93-5p/ROCK2 axis

  • Li Zhao,
  • Huaqian Chen,
  • Lin Wu,
  • Zhengdong Li,
  • Ren Zhang,
  • Yan Zeng,
  • Tao Yang,
  • Hualing Ruan

DOI
https://doi.org/10.1186/s13098-021-00726-4
Journal volume & issue
Vol. 13, no. 1
pp. 1 – 13

Abstract

Read online

Abstract Background Long non-coding RNAs (lncRNAs) have been reported to play vital roles in diabetic nephropathy (DN). The aim of this study was to explore the function of mechanism of lncRNA KCNQ1 opposite strand/antisense transcript 1 (KCNQ1OT1) in DN. Methods DN cell models were established using high glucose (HG) treatment in human glomerular mesangial cells (HGMC) and human renal glomerular endothelial cells (HRGEC). The expression levels of KCNQ1OT1, microRNA-93-5p (miR-93-5p), and Rho associated coiled-coil containing protein kinase 2 (ROCK2) mRNA was detected by quantitative real-time polymerase chain reaction (qRT-PCR). Cell Counting Kit-8 (CCK-8) assay and flow cytometry were used to detect cell proliferation and apoptosis, respectively. ROCK2 and apoptosis/fibrosis-related protein levels were examined by western blot. The predicted interaction between miR-93-5p and KCNQ1OT1 or ROCK2 was verified by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. Results KCNQ1OT1 was upregulated in DN patients and DN cell models. KCNQ1OT1 knockdown inhibited cell proliferation and fibrosis and induced apoptosis in DN cell models. MiR-93-5p was a direct target of KCNQ1OT1, and miR-93-5p inhibition restored the KCNQ1OT1 knockdown-mediated effects on cell proliferation, fibrosis and apoptosis in DN cell models. In addition, ROCK2 was identified as a target of miR-93-5p, and miR-93-5p overexpression suppressed cell proliferation and fibrosis and accelerated apoptosis by targeting ROCK2 in DN cell models. Moreover, KCNQ1OT1 regulated ROCK2 expression by binding to miR-93-5p. Conclusion KCNQ1OT1 knockdown inhibited cell proliferation and fibrosis and induced apoptosis in DN by regulating miR-93-5p/ROCK2 axis, providing potential value for the treatment of DN.

Keywords