Nature Communications (May 2022)

Benchmarking of analysis strategies for data-independent acquisition proteomics using a large-scale dataset comprising inter-patient heterogeneity

  • Klemens Fröhlich,
  • Eva Brombacher,
  • Matthias Fahrner,
  • Daniel Vogele,
  • Lucas Kook,
  • Niko Pinter,
  • Peter Bronsert,
  • Sylvia Timme-Bronsert,
  • Alexander Schmidt,
  • Katja Bärenfaller,
  • Clemens Kreutz,
  • Oliver Schilling

DOI
https://doi.org/10.1038/s41467-022-30094-0
Journal volume & issue
Vol. 13, no. 1
pp. 1 – 13

Abstract

Read online

Data independent acquisition (DIA) has been gaining momentum in clinical proteomics. Here, the authors create a benchmark dataset comprising inter-patient heterogeneity to compare popular DIA data analysis workflows for identifying differentially abundant proteins.