Systems (Jul 2021)

Startup Investment Decision Support: Application of Venture Capital Scorecards Using Machine Learning Approaches

  • Sarah Bai,
  • Yijun Zhao

DOI
https://doi.org/10.3390/systems9030055
Journal volume & issue
Vol. 9, no. 3
p. 55

Abstract

Read online

This research aims to explore which kinds of metrics are more valuable in making investment decisions for a venture capital firm using machine learning methods. We measure the fit of developed companies to a venture capital firm’s investment thesis with a balanced scorecard based on quantitative and qualitative characteristics of the companies. Collaborating with the management team of Rose Street Capital (RSC), we explore the most influential factors of their balanced scorecard using their retrospective investment decisions of successful and failed startup companies. Our study employs six standard machine learning models and their counterparts with an additional feature selection technique. Our findings suggest that “planning strategy” and “team management” are the two most determinant factors in the firm’s investment decisions, implying that qualitative factors could be more important to startup evaluation. Furthermore, we analyzed which machine learning models were most accurate in predicting the firm’s investment decisions. Our experimental results demonstrate that the best machine learning models achieve an overall accuracy of 78% in making the correct investment decisions, with an average of 87% and 69% in predicting the decision of companies the firm would and would not have invested in, respectively. Our study provides convincing evidence that qualitative criteria could be more influential in investment decisions and machine learning models can be adapted to help provide which values may be more important to consider for a venture capital firm.

Keywords