Frontiers in Neurology (Nov 2021)

Assessing Lumbar Plexus and Sciatic Nerve Damage in Relapsing-Remitting Multiple Sclerosis Using Magnetisation Transfer Ratio

  • Ratthaporn Boonsuth,
  • Rebecca S. Samson,
  • Carmen Tur,
  • Carmen Tur,
  • Marco Battiston,
  • Francesco Grussu,
  • Francesco Grussu,
  • Francesco Grussu,
  • Torben Schneider,
  • Masami Yoneyama,
  • Ferran Prados,
  • Ferran Prados,
  • Ferran Prados,
  • Antrea Ttofalla,
  • Sara Collorone,
  • Rosa Cortese,
  • Olga Ciccarelli,
  • Claudia A. M. Gandini Wheeler-Kingshott,
  • Claudia A. M. Gandini Wheeler-Kingshott,
  • Claudia A. M. Gandini Wheeler-Kingshott,
  • Marios C. Yiannakas

DOI
https://doi.org/10.3389/fneur.2021.763143
Journal volume & issue
Vol. 12

Abstract

Read online

Background: Multiple sclerosis (MS) has traditionally been regarded as a disease confined to the central nervous system (CNS). However, neuropathological, electrophysiological, and imaging studies have demonstrated that the peripheral nervous system (PNS) is also involved, with demyelination and, to a lesser extent, axonal degeneration representing the main pathophysiological mechanisms.Aim: The purpose of this study was to assess PNS damage at the lumbar plexus and sciatic nerve anatomical locations in people with relapsing-remitting MS (RRMS) and healthy controls (HCs) in vivo using magnetisation transfer ratio (MTR), which is a known imaging biomarker sensitive to alterations in myelin content in neural tissue, and not previously explored in the context of PNS damage in MS.Method: Eleven HCs (7 female, mean age 33.6 years, range 24-50) and 15 people with RRMS (12 female, mean age 38.5 years, range 30-56) were recruited for this study and underwent magnetic resonance imaging (MRI) investigations together with clinical assessments using the expanded disability status scale (EDSS). Magnetic resonance neurography (MRN) was first used for visualisation and identification of the lumbar plexus and the sciatic nerve and MTR imaging was subsequently performed using identical scan geometry to MRN, enabling straightforward co-registration of all data to obtain global and regional mean MTR measurements. Linear regression models were used to identify differences in MTR values between HCs and people with RRMS and to identify an association between MTR measures and EDSS.Results: MTR values in the sciatic nerve of people with RRMS were found to be significantly lower compared to HCs, but no significant MTR changes were identified in the lumbar plexus of people with RRMS. The median EDSS in people with RRMS was 2.0 (range, 0-3). No relationship between the MTR measures in the PNS and EDSS were identified at any of the anatomical locations studied in this cohort of people with RRMS.Conclusion: The results from this study demonstrate the presence of PNS damage in people with RRMS and support the notion that these changes, suggestive of demyelination, maybe occurring independently at different anatomical locations within the PNS. Further investigations to confirm these findings and to clarify the pathophysiological basis of these alterations are warranted.

Keywords