Entropy (Mar 2024)
Three-Dimensional Reconstruction Pre-Training as a Prior to Improve Robustness to Adversarial Attacks and Spurious Correlation
Abstract
Ensuring robustness of image classifiers against adversarial attacks and spurious correlation has been challenging. One of the most effective methods for adversarial robustness is a type of data augmentation that uses adversarial examples during training. Here, inspired by computational models of human vision, we explore a synthesis of this approach by leveraging a structured prior over image formation: the 3D geometry of objects and how it projects to images. We combine adversarial training with a weight initialization that implicitly encodes such a prior about 3D objects via 3D reconstruction pre-training. We evaluate our approach using two different datasets and compare it to alternative pre-training protocols that do not encode a prior about 3D shape. To systematically explore the effect of 3D pre-training, we introduce a novel dataset called Geon3D, which consists of simple shapes that nevertheless capture variation in multiple distinct dimensions of geometry. We find that while 3D reconstruction pre-training does not improve robustness for the simplest dataset setting, we consider (Geon3D on a clean background) that it improves upon adversarial training in more realistic (Geon3D with textured background and ShapeNet) conditions. We also find that 3D pre-training coupled with adversarial training improves the robustness to spurious correlations between shape and background textures. Furthermore, we show that the benefit of using 3D-based pre-training outperforms 2D-based pre-training on ShapeNet. We hope that these results encourage further investigation of the benefits of structured, 3D-based models of vision for adversarial robustness.
Keywords