PLoS ONE (Jan 2018)

Genetic analysis and gene mapping of a low stigma exposed mutant gene by high-throughput sequencing.

  • Xiao Ma,
  • Zhuo Zheng,
  • Fanshu Lin,
  • Tingting Ge,
  • Huimin Sun

DOI
https://doi.org/10.1371/journal.pone.0186942
Journal volume & issue
Vol. 13, no. 1
p. e0186942

Abstract

Read online

Rice is one of the main food crops and several studies have examined the molecular mechanism of the exposure of the rice plant stigma. The improvement in the exposure of the stigma in female parent hybrid combinations can enhance the efficiency of hybrid breeding. In the present study, a mutant plant with low exposed stigma (lesr) was discovered among the descendants of the indica thermo-sensitive sterile line 115S. The ES% rate of the mutant decreased by 70.64% compared with the wild type variety. The F2 population was established by genetic analysis considering the mutant as the female parent and the restorer line 93S as the male parent. The results indicated a normal F1 population, while a clear division was noted for the high and low exposed stigma groups, respectively. This process was possible only by a ES of 25% in the F2 population. This was in agreement with the ratio of 3:1, which indicated that the mutant was controlled by a recessive main-effect QTL locus, temporarily named as LESR. Genome-wide comparison of the SNP profiles between the early, high and low production bulks were constructed from F2 plants using bulked segregant analysis in combination with high-throughput sequencing technology. The results demonstrated that the candidate loci was located on the chromosome 10 of the rice. Following screening of the recombinant rice plants with newly developed molecular markers, the genetic region was narrowed down to 0.25 Mb. This region was flanked by InDel-2 and InDel-2 at the physical location from 13.69 to 13.94 Mb. Within this region, 7 genes indicated base differences between parents. A total of 2 genes exhibited differences at the coding region and upstream of the coding region, respectively. The present study aimed to further clone the LESR gene, verify its function and identify the stigma variation.