Journal of King Saud University: Computer and Information Sciences (Dec 2024)
A hierarchical and secure approach for automotive firmware upgrades
Abstract
With the development of intelligent and connected vehicles, the expansion of software necessitates an increased significance and frequency of automotive firmware upgrades. The abundance of potential attack vectors and valuable data renders these upgrades enticing targets for attackers. However, the prevailing security services used for automotive firmware upgrades are no longer sufficient to meet security requirements. Hence, this paper proposes a Secure Automotive Firmware Upgrade Approach (SAFUA), aimed at enhancing authentication and communication security during automotive firmware upgrades. To address the heterogeneous performance of in-vehicle nodes and diverse application contexts, this approach introduces multiple authentication modes tailored to various upgrade scenarios. Moreover, hierarchical authentication and secure communication strategies are designed to achieve a balance between security and efficiency requirements. Consolidating these methodologies, a standardized automotive firmware upgrade process is delineated. Formal and informal verification of the proposed approach is conducted to attest its security efficacy. Furthermore, a simulated vehicular environment is constructed to evaluate the temporal and spatial efficiency of the approach across diverse bus and device configurations. The results confirm the adaptability of the secure upgrade approach outlined herein to the automotive firmware upgrade landscape, offering robust security alongside enhanced upgrade efficiency.