Journal of Lipid Research (Feb 2003)

Down-regulation of acyl-CoA oxidase gene expression and increased NF-κB activity in etomoxir-induced cardiac hypertrophy

  • Àgatha Cabrero,
  • Manuel Merlos,
  • Juan C. Laguna,
  • Manuel Vázquez Carrera

Journal volume & issue
Vol. 44, no. 2
pp. 388 – 398

Abstract

Read online

Activation of nuclear factor-κB (NF-κB) is required for hypertrophic growth of cardiomyocytes. Etomoxir is an irreversible inhibitor of carnitine palmitoyltransferase I (CPT-I) that activates peroxisome proliferator-activated receptor α (PPARα) and induces cardiac hypertrophy through an unknown mechanism. We studied the mRNA expression of genes involved in fatty acid oxidation in the heart of mice treated for 1 or 10 days with etomoxir (100 mg/kg/day). Etomoxir administration for 1 day significantly increased (4.4-fold induction) the mRNA expression of acyl-CoA oxidase (ACO), which catalyzes the rate-limiting step in peroxisomal β-oxidation. In contrast, etomoxir treatment for 10 days dramatically decreased ACO mRNA levels by 96%. The reduction in ACO expression in the hearts of 10-day etomoxir-treated mice was accompanied by an increase in the mRNA expression of the antioxidant enzyme glutathione peroxidase and the cardiac marker of oxidative stress bax. Moreover, the activity of the redox-regulated transcription factor NF-κB was increased in heart after 10 days of etomoxir treatment.Overall, the findings here presented show that etomoxir treatment may induce cardiac hypertrophy via increased cellular oxidative stress and NF-κB activation.

Keywords