Molecules (May 2023)
Development and Validation of Green and High-Throughput Microwell Spectrophotometric Assay for the Determination of Selective Serotonin Reuptake Inhibitors in Their Pharmaceutical Dosage Forms
Abstract
This study describes the development and validation of a new green and high-throughput microwell spectrophotometric assay (MW-SPA) for the determination of three selective serotonin reuptake inhibitors (SSRIs) in their pharmaceutical dosage forms. These SSRIs are fluoxetine, fluvoxamine, and paroxetine, the most prescribed drugs for the treatment of depression. The proposed assay was based on the formation of orange-colored N-substituted naphthoquinone derivatives upon the reaction of SSRIs with 1,2-naphthoquinone-4-sulphonate (NQS) in alkaline media. The assay was conducted in 96-microwell assay plates, and the absorbances of the reaction products were measured by a microplate reader at their maximum absorbance wavelengths. The optimum conditions of the reaction were refined and established. Under these conditions, calibration curves were generated, and linear regression equations were computed. The linear relations between the absorbances and drug concentrations were linear with good correlation coefficients (0.9992–0.9997) in the range of 2–80 µg/mL. The assay limits of detection were in the range of 1.5–4.2 µg/mL. The precision was satisfactory as the values of relative standard deviation did not exceed 1.70%. The accuracy of the assay was ≥98.2%. The proposed MW-SPA was successfully applied to the analysis of the SSRIs in their pharmaceutical dosage forms with acceptable accuracy and precision; the label claims were 99.2–100.5% (±0.96–1.35%). The results of the proposed MW-SPA were compared with those of the official/pre-validated assays by statistical analysis with respect to the accuracy (by t-test) and precision (by F-test). No significant differences were found between the calculated and theoretical values of the t- and F-tests at the 95% confidence level, proving similar accuracy and precision in the determination of SSRIs by both assays. The greenness of the proposed assay was confirmed by two metric tools. In addition, the assay is characterized with a high-throughput property which enables the simultaneous analysis of many samples in a short time. Therefore, the assay is a valuable tool for rapid routine application in pharmaceutical quality control units for the determination of the investigated SSRIs.
Keywords