Pupil dynamics during very light exercise predict benefits to prefrontal cognition
Ryuta Kuwamizu,
Yudai Yamazaki,
Naoki Aoike,
Taichi Hiraga,
Toshiaki Hata,
Michael A. Yassa,
Hideaki Soya
Affiliations
Ryuta Kuwamizu
Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki 305-8574, Japan; Graduate School of Letters, Kyoto University, Kyoto 606-8501, Japan
Yudai Yamazaki
Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki 305-8574, Japan; Sport Neuroscience Division, Advanced Research Initiative for Human High Performance (ARIHHP), Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki 305-8574, Japan
Naoki Aoike
Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki 305-8574, Japan; Sport Neuroscience Division, Advanced Research Initiative for Human High Performance (ARIHHP), Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki 305-8574, Japan
Taichi Hiraga
Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki 305-8574, Japan
Toshiaki Hata
Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki 305-8574, Japan
Michael A. Yassa
Sport Neuroscience Division, Advanced Research Initiative for Human High Performance (ARIHHP), Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki 305-8574, Japan; Department of Neurobiology and Behavior and Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine, CA 92679-3800, USA
Hideaki Soya
Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki 305-8574, Japan; Sport Neuroscience Division, Advanced Research Initiative for Human High Performance (ARIHHP), Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki 305-8574, Japan; Corresponding author at: Laboratory of Exercise Biochemistry and Neuroendocrinology, Sport Neuroscience Division, Advanced Research Initiative for Human High Performance (ARIHHP), Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8574, Japan.
Physical exercise, even stress-free very-light-intensity exercise such as yoga and very slow running, can have beneficial effects on executive function, possibly by potentiating prefrontal cortical activity. However, the exact mechanisms underlying this potentiation have not been identified. Evidence from studies using pupillometry demonstrates that pupil changes track the real-time dynamics of activity linked to arousal and attention, including neural circuits from the locus coeruleus to the cortex. This makes it possible to examine whether pupil-linked brain dynamics induced during very-light-intensity exercise mediate benefits to prefrontal executive function in healthy young adults. In this experiment, pupil diameter was measured during 10 min of very-light-intensity exercise (30% V˙o2peak). A Stroop task was used to assess executive function before and after exercise. Prefrontal cortical activation during the task was assessed using multichannel functional near-infrared spectroscopy (fNIRS). We observed that very-light-intensity exercise significantly elicited pupil dilation, reduction of Stroop interference, and task-related left dorsolateral prefrontal cortex activation compared with the resting-control condition. The magnitude of change in pupil dilation predicted the magnitude of improvement in Stroop performance. In addition, causal mediation analysis showed that pupil dilation during very-light-intensity exercise robustly determined subsequent enhancement of Stroop performance. This finding supports our hypothesis that the pupil-linked mechanisms, which may be tied to locus coeruleus activation, are a potential mechanism by which very light exercise enhances prefrontal cortex activation and executive function. It also suggests that pupillometry may be a useful tool to interpret the beneficial impact of exercise on boosting cognition.