Agronomy (Feb 2020)
Comparisons of Chlorophyll Fluorescence and Physiological Characteristics of Wheat Seedlings Influenced by Iso-Osmotic Stresses from Polyethylene Glycol and Sodium Chloride
Abstract
Wheat (Triticum aestivum) cultivar Taichung SEL.2 (TCS2) is a salt-tolerance variety, but the mechanism involved remains unclear. This study aims to distinguish between the non-ionic osmotic and salt-mediated physiological effects on TCS2. Osmotic agents polyethylene glycol (PEG) and sodium chloride (NaCl) were applied at three iso-osmotic levels, level 1 containing 24% (w/v) PEG and 200 mM NaCl, level 2 containing 26.5% (w/v) PEG and 250 mM NaCl), and level 3 containing 29% (w/v) PEG and 300 mM NaCl, respectively. According to the investigation of chlorophyll fluorescence in the better NaCl-treated seedlings, maximal quantum yield of photosystem II (PSII) (Fv/Fm) and significant higher effective quantum yield of PSII (ΦPSII) at level 3 were observed. Meanwhile, the non-photochemical quenching of PSII (NPQ) and the quantum yield of regulated energy dissipation of PSII [Y(NPQ)] were significantly higher in the NaCl-treated seedlings, and the quantum yield of non-regulated energy dissipation of PSII [Y(NO)] in the NaCl-treated seedlings was lower than the PEG-treated ones at level 2 and level 3. Furthermore, the less extensive degradation of photosynthetic pigments, the better ascorbate peroxidase (APX) activity and the less accumulation of malondialdehyde (MDA) were also observed in NaCl-treated seedlings. In the morphological traits, shoot elongation in NaCl-treated seedlings was also preserved. These results suggest that TCS2 is more resistant to NaCl-induced osmotic stress than to the PEG-induced stress. This study contributes to plant breeder interest in drought- and/or salt-tolerant wheat varieties.
Keywords