Atmosphere (May 2020)

Mineral Dust and Iron Solubility: Effects of Composition, Particle Size, and Surface Area

  • Aurelie R. Marcotte,
  • Ariel D. Anbar,
  • Brian J. Majestic,
  • Pierre Herckes

DOI
https://doi.org/10.3390/atmos11050533
Journal volume & issue
Vol. 11, no. 5
p. 533

Abstract

Read online

There is significant iron deposition in the oceans, approximately 14–16 Tg annually from mineral dust aerosols, but only a small percentage (approx. 3%) of it is soluble and, thus, bioavailable. In this work, we examine the effect of mineralogy, particle size, and surface area on iron solubility in pure mineral phases to simulate atmospheric processing of mineral dust aerosols during transport. Pure iron-bearing minerals common to Saharan dust were partitioned into four size fractions (10–2.5, 2.5–1, 1–0.5, and 0.5–0.25 µm) and extracted into moderately acidic (pH 4.3) and acidic (pH 1.7) leaching media to simulate mineral processing during atmospheric transport. Results show that, in general, pure iron-bearing clay materials present an iron solubility (% dissolved Fe/total Fe in the mineral) an order of magnitude higher than pure iron oxide minerals. The relative solubility of iron in clay particles does not depend on particle size for the ranges examined (0.25–10 μm), while iron in hematite and magnetite shows a trend of increasing solubility with decreasing particle size in the acidic leaching medium. Our results indicate that while mineralogy and aerosol pH have an effect on the solubilization of iron from simulated mineral dust particles, surface processes of the aerosol might also have a role in iron solubilization during transport. The surface area of clay minerals does not change significantly as a function of particle size (10–0.25 µm), while the surface area of iron oxides is strongly size dependent. Overall, these results show how mineralogy and particle size can influence iron solubility in atmospheric dust.

Keywords