Adaptation of the Invasive Plant <i>Sphagneticola trilobata</i> (L.) Pruski to Drought Stress
Qilei Zhang,
Ye Wang,
Zhilong Weng,
Guangxin Chen,
Changlian Peng
Affiliations
Qilei Zhang
Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
Ye Wang
Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
Zhilong Weng
Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
Guangxin Chen
Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
Changlian Peng
Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
Invasive species and their hybrids with native species threaten biodiversity. However, there are few reports on the drought stress adaptability of invasive species Sphagneticola trilobata (L.) Pruski and its hybrid with native species S. calendulacea. In this study, relative water content (RWC), abscisic acid (ABA), reactive oxygen species, antioxidant capacity, and photosynthetic capacity were measured in the hybrid and its parents under drought stress (13% PEG-6000). Under drought stress, the ABA content and RWC in S. trilobata were the highest. RWC decreased by 28% in S. trilobata, 41% in S. calendulacea, and 33% in the hybrid. Activities of the antioxidant enzymes in S. trilobata were the highest, and the accumulation of malondialdehyde (MDA) was the lowest (4.3 μg g−1), while it was the highest in S. calendulacea (6.9 μg g−1). The maximum photochemical efficiency (Fv/Fm) of S. calendulacea was the lowest (0.71), and it was the highest in S. trilobata (7.5) at 8 h under drought stress. The results suggest that the drought resistance of the hybrid was weaker than that of S. trilobata but stronger than that of S. calendulacea. Therefore, the survival of S. calendulacea may be threatened by both the invasive species S. trilobata and the hybrid.