Revealing processing stability landscape of organic solar cells with automated research platforms and machine learning
Xiaoyan Du,
Larry Lüer,
Thomas Heumueller,
Andrej Classen,
Chao Liu,
Christian Berger,
Jerrit Wagner,
Vincent M. Le Corre,
Jiamin Cao,
Zuo Xiao,
Liming Ding,
Karen Forberich,
Ning Li,
Jens Hauch,
Christoph J. Brabec
Affiliations
Xiaoyan Du
Helmholtz Institute Erlangen‐Nürnberg for Renewable Energy (HI ERN) Forschungszentrum Jülich GmbH Erlangen Germany
Larry Lüer
Helmholtz Institute Erlangen‐Nürnberg for Renewable Energy (HI ERN) Forschungszentrum Jülich GmbH Erlangen Germany
Thomas Heumueller
Helmholtz Institute Erlangen‐Nürnberg for Renewable Energy (HI ERN) Forschungszentrum Jülich GmbH Erlangen Germany
Andrej Classen
Helmholtz Institute Erlangen‐Nürnberg for Renewable Energy (HI ERN) Forschungszentrum Jülich GmbH Erlangen Germany
Chao Liu
Helmholtz Institute Erlangen‐Nürnberg for Renewable Energy (HI ERN) Forschungszentrum Jülich GmbH Erlangen Germany
Christian Berger
Helmholtz Institute Erlangen‐Nürnberg for Renewable Energy (HI ERN) Forschungszentrum Jülich GmbH Erlangen Germany
Jerrit Wagner
Helmholtz Institute Erlangen‐Nürnberg for Renewable Energy (HI ERN) Forschungszentrum Jülich GmbH Erlangen Germany
Vincent M. Le Corre
Helmholtz Institute Erlangen‐Nürnberg for Renewable Energy (HI ERN) Forschungszentrum Jülich GmbH Erlangen Germany
Jiamin Cao
Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering Hunan University of Science and Technology Xiangtan the People’s Republic of China
Zuo Xiao
Center for Excellence in Nanoscience, Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS) National Center for Nanoscience and Technology Beijing the People’s Republic of China
Liming Ding
Center for Excellence in Nanoscience, Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS) National Center for Nanoscience and Technology Beijing the People’s Republic of China
Karen Forberich
Helmholtz Institute Erlangen‐Nürnberg for Renewable Energy (HI ERN) Forschungszentrum Jülich GmbH Erlangen Germany
Ning Li
Helmholtz Institute Erlangen‐Nürnberg for Renewable Energy (HI ERN) Forschungszentrum Jülich GmbH Erlangen Germany
Jens Hauch
Helmholtz Institute Erlangen‐Nürnberg for Renewable Energy (HI ERN) Forschungszentrum Jülich GmbH Erlangen Germany
Christoph J. Brabec
Helmholtz Institute Erlangen‐Nürnberg for Renewable Energy (HI ERN) Forschungszentrum Jülich GmbH Erlangen Germany
Abstract We use an automated research platform combined with machine learning to assess and understand the resilience against air and light during production of organic photovoltaic (OPV) devices from over 40 donor and acceptor combinations. The standardized protocol and high reproducibility of the platform results in a dataset of high variety and veracity to deploy machine learning models to encounter links between stability and chemical, energetic, and morphological structure. We find that the strongest predictor for air/light resilience during production is the effective gap Eg,eff which points to singlet oxygen rather than the superoxide anion being the dominant agent in degradation under processing conditions. A similarly good prediction of air/light resilience can also be achieved by considering only features from chemical structure, that is, information which is available prior to any experimentation.